Remodeling of the corticospinal innervation and spontaneous behavioral recovery after ischemic stroke in adult mice.
نویسندگان
چکیده
BACKGROUND AND PURPOSE To elucidate how the motor pathways rewire the denervated tissue after stroke, we investigated remodeling of the corticospinal tract (CST) in transgenic mice with yellow fluorescent protein CST labeling in conjunction with transsynaptic pseudorabies virus retrograde tracing. METHODS Adult male CST-yellow fluorescent protein mice were subjected to permanent right middle cerebral artery occlusion (n=8/group). Foot-fault test was performed to monitor functional deficit and recovery. Pseudorabies virus tracer was injected into the left forelimb muscles at 1 or 4 weeks after middle cerebral artery occlusion (4 days before euthanasia), respectively. A third group of CST-yellow fluorescent protein mice without middle cerebral artery occlusion was used for normal control (n=6). The yellow fluorescent protein labeling of CST in the cervical cord and pseudorabies virus labeling of pyramidal neurons in the bilateral cortices were measured on vibratome sections using a confocal imaging system. RESULTS Compared with normal animals, axonal density in the stroke-affected side of the cervical cord was significantly decreased at 11 days (P<0.001) and significantly increased at 32 days after stroke compared with the Day 11 values (P<0.05). Pseudorabies virus labeling was significantly decreased in the ischemic hemisphere 11 days after middle cerebral artery occlusion (P<0.001). In contrast, a significant increase was observed in pseudorabies virus labeling of bilateral cortices 32 days after stroke compared with 11 days (P<0.05). The CST axonal density in the denervated spinal cord and pyramidal neuron labeling in the bilateral cortices were significantly correlated with behavioral recovery (P<0.05). CONCLUSIONS Spontaneous functional recovery after stroke may, at least in part, be attributed to neuronal remodeling in the corticospinal system.
منابع مشابه
Bone marrow stromal cells promote skilled motor recovery and enhance contralesional axonal connections after ischemic stroke in adult mice.
BACKGROUND AND PURPOSE We tested the effect of bone marrow stromal cells (BMSCs) on neuronal remodeling of the corticospinal tract originating from the contralesional cortex in mice subjected to unilateral pyramidotomy (PT) followed by middle cerebral artery occlusion (MCAO). METHODS Adult mice with transgenic yellow fluorescent protein labeling in the corticospinal tract were subjected to ri...
متن کاملBasic Sciences Bone Marrow Stromal Cells Promote Skilled Motor Recovery and Enhance Contralesional Axonal Connections After Ischemic Stroke in Adult Mice
Background and Purpose—We tested the effect of bone marrow stromal cells (BMSCs) on neuronal remodeling of the corticospinal tract originating from the contralesional cortex in mice subjected to unilateral pyramidotomy (PT) followed by middle cerebral artery occlusion (MCAO). Methods—Adult mice with transgenic yellow fluorescent protein labeling in the corticospinal tract were subjected to righ...
متن کاملAxonal remodeling of the corticospinal tract in the spinal cord contributes to voluntary motor recovery after stroke in adult mice.
BACKGROUND AND PURPOSE We sought to demonstrate the contribution of axonal remodeling of the corticospinal tract (CST) in the spinal cord to functional outcome after stroke. METHODS Bilateral pyramidotomy (BPT) or sham-BPT was performed in mice with transgenic yellow fluorescent protein labeling in the CST subjected to middle cerebral artery occlusion (MCAo). Foot-fault and single pellet reac...
متن کاملContralesional axonal remodeling of the corticospinal system in adult rats after stroke and bone marrow stromal cell treatment.
BACKGROUND AND PURPOSE Motor recovery after stroke is associated with neuronal reorganization in bilateral hemispheres. We investigated contralesional corticospinal tract remodeling in the brain and spinal cord in rats after stroke and treatment of bone marrow stromal cells. METHODS Adult male Wistar rats were subjected to permanent right middle cerebral artery occlusion. Phosphate-buffered s...
متن کاملEffect of Hypothermia by JZL-184 on Muscle Strength and Sensory-Motor Dysfunction in Permanent Middle Cerebral Artery Ischemia Model in Male Mice
Introduction: Currently, there is no effective and comprehensive treatment for ischemic stroke. There is strong clinical evidence for the benefits of hypothermia in neuroprotection. Therefore, the present study aimed to determine the effect of mild non-invasive hypothermia by JZL-184 on behavioral improvement in stroke rats. Methods: This study was performed on 5 groups of male mice weighing 2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 40 7 شماره
صفحات -
تاریخ انتشار 2009